Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 445
Filtrar
1.
Heliyon ; 10(7): e28280, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560173

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) ravaged the world, and Coronavirus Disease 2019 (COVID-19) exhibited highly prevalent oral symptoms that had significantly impacted the lives of affected patients. However, the involvement of four human coronavirus (HCoVs), namely SARS-CoV-2, SARS-CoV, MERS-CoV, and HCoV-229E, in oral cavity infections remained poorly understood. We integrated single-cell RNA sequencing (scRNA-seq) data of seven human oral tissues through consistent normalization procedure, including minor salivary gland (MSG), parotid gland (PG), tongue, gingiva, buccal, periodontium and pulp. The Seurat, scDblFinder, Harmony, SingleR, Ucell and scCancer packages were comprehensively used for analysis. We identified specific cell clusters and generated expression profiles of SARS-CoV-2 and coronavirus-associated receptors and factors (SCARFs) in seven oral regions, providing direction for predicting the tropism of four HCoVs for oral tissues, as well as for dental clinical treatment. Based on our analysis, it appears that various SCARFs, including ACE2, ASGR1, KREMEN1, DPP4, ANPEP, CD209, CLEC4G/M, TMPRSS family proteins (including TMPRSS2, TMPRSS4, and TMPRSS11A), and FURIN, are expressed at low levels in the oral cavity. Conversely, BSG, CTSB, and CTSL exhibit enrichment in oral tissues. Our study also demonstrates widespread expression of restriction factors, particularly IFITM1-3 and LY6E, in oral cells. Additionally, some replication, assembly, and trafficking factors appear to exhibit broad oral tissues expression patterns. Overall, the oral cavity could potentially serve as a high-risk site for SARS-CoV-2 infection, while displaying a comparatively lower degree of susceptibility towards other HCoVs (including SARS-CoV, MERS-CoV and HCoV-229E). Specifically, MSG, tongue, and gingiva represent potential sites of vulnerability for four HCoVs infection, with the MSG exhibiting a particularly high susceptibility. However, the expression patterns of SCARFs in other oral sites demonstrate relatively intricate and may only be specifically associated with SARS-CoV-2 infection. Our study sheds light on the mechanisms of HCoVs infection in the oral cavity as well as gains insight into the characteristics and distribution of possible HCoVs target cells in oral tissues, providing potential therapeutic targets for HCoVs infection in the oral cavity.

2.
Br J Cancer ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582810

RESUMO

BACKGROUND: Mitochondrial dynamics play a fundamental role in determining stem cell fate. However, the underlying mechanisms of mitochondrial dynamics in the stemness acquisition of cancer cells are incompletely understood. METHODS: Metabolomic profiling of cells were analyzed by MS/MS. The genomic distribution of H3K27me3 was measured by CUT&Tag. Oral squamous cell carcinoma (OSCC) cells depended on glucose or glutamine fueling TCA cycle were monitored by 13C-isotope tracing. Organoids and tumors from patients and mice were treated with DRP1 inhibitors mdivi-1, ferroptosis inducer erastin, or combination with mdivi-1 and erastin to evaluate treatment effects. RESULTS: Mitochondria of OSCC stem cells own fragment mitochondrial network and DRP1 is required for maintenance of their globular morphology. Imbalanced mitochondrial dynamics induced by DRP1 knockdown suppressed stemness of OSCC cells. Elongated mitochondria increased α-ketoglutarate levels and enhanced glutaminolysis to fuel the TCA cycle by increasing glutamine transporter ASCT2 expression. α-KG promoted the demethylation of histone H3K27me3, resulting in downregulation of SNAI2 associated with stemness and EMT. Significantly, suppressing DRP1 enhanced the anticancer effects of ferroptosis. CONCLUSION: Our study reveals a novel mechanism underlying mitochondrial dynamics mediated cancer stemness acquisition and highlights the therapeutic potential of mitochondria elongation to increase the susceptibility of cancer cells to ferroptosis.

3.
BMC Oral Health ; 24(1): 434, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594651

RESUMO

BACKGROUND: The grading of oral epithelial dysplasia is often time-consuming for oral pathologists and the results are poorly reproducible between observers. In this study, we aimed to establish an objective, accurate and useful detection and grading system for oral epithelial dysplasia in the whole-slides of oral leukoplakia. METHODS: Four convolutional neural networks were compared using the image patches from 56 whole-slide of oral leukoplakia labeled by pathologists as the gold standard. Sequentially, feature detection models were trained, validated and tested with 1,000 image patches using the optimal network. Lastly, a comprehensive system named E-MOD-plus was established by combining feature detection models and a multiclass logistic model. RESULTS: EfficientNet-B0 was selected as the optimal network to build feature detection models. In the internal dataset of whole-slide images, the prediction accuracy of E-MOD-plus was 81.3% (95% confidence interval: 71.4-90.5%) and the area under the receiver operating characteristic curve was 0.793 (95% confidence interval: 0.650 to 0.925); in the external dataset of 229 tissue microarray images, the prediction accuracy was 86.5% (95% confidence interval: 82.4-90.0%) and the area under the receiver operating characteristic curve was 0.669 (95% confidence interval: 0.496 to 0.843). CONCLUSIONS: E-MOD-plus was objective and accurate in the detection of pathological features as well as the grading of oral epithelial dysplasia, and had potential to assist pathologists in clinical practice.


Assuntos
Aprendizado Profundo , Humanos , Leucoplasia Oral/diagnóstico
5.
BMC Genomics ; 25(1): 402, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658838

RESUMO

BACKGROUND: In recent years, Single-cell RNA sequencing (scRNA-seq) is increasingly accessible to researchers of many fields. However, interpreting its data demands proficiency in multiple programming languages and bioinformatic skills, which limited researchers, without such expertise, exploring information from scRNA-seq data. Therefore, there is a tremendous need to develop easy-to-use software, covering all the aspects of scRNA-seq data analysis. RESULTS: We proposed a clear analysis framework for scRNA-seq data, which emphasized the fundamental and crucial roles of cell identity annotation, abstracting the analysis process into three stages: upstream analysis, cell annotation and downstream analysis. The framework can equip researchers with a comprehensive understanding of the analysis procedure and facilitate effective data interpretation. Leveraging the developed framework, we engineered Shaoxia, an analysis platform designed to democratize scRNA-seq analysis by accelerating processing through high-performance computing capabilities and offering a user-friendly interface accessible even to wet-lab researchers without programming expertise. CONCLUSION: Shaoxia stands as a powerful and user-friendly open-source software for automated scRNA-seq analysis, offering comprehensive functionality for streamlined functional genomics studies. Shaoxia is freely accessible at http://www.shaoxia.cloud , and its source code is publicly available at https://github.com/WiedenWei/shaoxia .


Assuntos
Análise de Sequência de RNA , Análise de Célula Única , Software , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos , Internet , Humanos , Biologia Computacional/métodos , RNA-Seq/métodos , Interface Usuário-Computador
6.
Oral Dis ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501334

RESUMO

OBJECTIVE: Peri-implantitis is one of the most common complications of implants. However, its pathogenesis has not been clarified. In recent years, mouse models are gradually being used in the study of peri-implantitis. This review aims to summarize the methods used to induce peri-implantitis in mice and their current applications. METHOD: Articles of peri-implantitis mouse models were collected. We analyzed the various methods of inducing peri-implantitis and their application in different areas. RESULTS: Most researchers have induced peri-implantitis by silk ligatures. Some others have induced peri-implantitis by Pg gavage and LPS injection. Current applications of peri-implantitis mouse models are in the following areas: investigation of pathogenesis and exploration of new interventions, comparison of peri-implantitis with periodontitis, the interaction between systemic diseases and peri-implantitis, etc. CONCLUSION: Silk ligature for 2-4 weeks, Pg gavage for 6 weeks, and LPS injection for 6 weeks all successfully induced peri-implantitis in mice. Mice have the advantages of mature gene editing technology, low cost, and short time to induce peri-implantitis. It has applications in the study of pathogenesis, non-surgical treatments, and interactions with other diseases. However, compared with large animals, mice also have a number of disadvantages that limit their application.

7.
Elife ; 122024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536078

RESUMO

Periodontitis drives irreversible destruction of periodontal tissue and is prone to exacerbating inflammatory disorders. Systemic immunomodulatory management continues to be an attractive approach in periodontal care, particularly within the context of 'predictive, preventive, and personalized' periodontics. The present study incorporated genetic proxies identified through genome-wide association studies for circulating immune cells and periodontitis into a comprehensive Mendelian randomization (MR) framework. Univariable MR, multivariable MR, subgroup analysis, reverse MR, and Bayesian model averaging (MR-BMA) were utilized to investigate the causal relationships. Furthermore, transcriptome-wide association study and colocalization analysis were deployed to pinpoint the underlying genes. Consequently, the MR study indicated a causal association between circulating neutrophils, natural killer T cells, plasmacytoid dendritic cells, and an elevated risk of periodontitis. MR-BMA analysis revealed that neutrophils were the primary contributors to periodontitis. The high-confidence genes S100A9 and S100A12, located on 1q21.3, could potentially serve as immunomodulatory targets for neutrophil-mediated periodontitis. These findings hold promise for early diagnosis, risk assessment, targeted prevention, and personalized treatment of periodontitis. Considering the marginal association observed in our study, further research is required to comprehend the biological underpinnings and ascertain the clinical relevance thoroughly.


Assuntos
Estudo de Associação Genômica Ampla , Periodontite , Humanos , Teorema de Bayes , Calgranulina B , Células Dendríticas
8.
Biomolecules ; 14(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38540786

RESUMO

In pulpitis, dentinal restorative processes are considerably associated with undifferentiated mesenchymal cells in the pulp. This study aimed to investigate strategies to improve the odonto/osteogenic differentiation of dental pulp stem cells (DPSCs) in an inflammatory environment. After pretreatment of DPSCs with 20 ng/mL tumor necrosis factor-induced protein-6 (TSG-6), DPSCs were cultured in an inflammation-inducing solution. Real-time polymerase chain reaction and Western blotting were performed to measure the expression levels of nuclear factor kappa B (NF-κB) and odonto/osteogenic differentiation markers, respectively. Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays were used to assess cell proliferation and activity. Subcutaneous ectopic osteogenesis and mandibular bone cultures were performed to assess the effects of TSG-6 in vivo. The expression levels of odonto/osteogenic markers were higher in TSG-6-pre-treated DPSCs than nontreated DPSCs, whereas NF-κB-related proteins were lower after the induction of inflammation. An anti-CD44 antibody counteracted the rescue effect of TSG-6 on DPSC activity and mineralization in an inflammatory environment. Exogenous administration of TSG-6 enhanced the anti-inflammatory properties of DPSCs and partially restored their mineralization function by inhibiting NF-κB signaling. The mechanism of action of TSG-6 was attributed to its interaction with CD44. These findings reveal novel mechanisms by which DPSCs counter inflammation and provide a basis for the treatment of pulpitis.


Assuntos
NF-kappa B , Pulpite , Humanos , NF-kappa B/metabolismo , Osteogênese , Pulpite/metabolismo , Polpa Dentária/metabolismo , Transdução de Sinais , Diferenciação Celular , Inflamação/metabolismo , Células-Tronco , Células Cultivadas , Proliferação de Células , Receptores de Hialuronatos/metabolismo
9.
J Bone Miner Res ; 39(3): 326-340, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38477820

RESUMO

Proteasome activator subunit 3 (PA28γ) is a member of the proteasome activator family, which mainly regulates the degradation and stability of proteins. Studies have shown that it plays crucial roles in lipid formation, stemness maintenance, and blood vessel formation. However, few studies have clarified the association between PA28γ and bone diseases. Herein, we identified PA28γ as a previously unknown regulator of bone homeostasis that coordinates bone formation and lipid accumulation. PA28γ-knockout mice presented with the characteristics of low bone mass and accumulation of lipids. Suppressed expression of PA28γ restrained the osteogenic differentiation and enhanced the adipogenic differentiation of bone marrow stromal cells (BMSCs). Overexpression of PA28γ promoted osteogenic differentiation and inhibited adipogenic differentiation of BMSCs. Mechanistically, PA28γ interacted with Wnt5α, and the two interactors appeared to be positively correlated. PA28γ mainly activated the downstream Wnt/ß-catenin signaling pathway, which affects BMSCs differentiation homeostasis. Deletion of Wnt5α significantly delayed the promotion of osteogenic differentiation and partially alleviated the inhibitory effect of adipogenic differentiation of BMSCs in the PA28γ-overexpressing group. Furthermore, we demonstrated that PA28γ-knockout mice had an inhibited rate of bone healing in a drill-hole femoral bone defect model in vivo. Therefore, our results confirm the effects of PA28γ on bone formation and bone defect repair, indicating that PA28γ mainly interacts with Wnt5α to activate the Wnt/ß-catenin signaling pathway regulating BMSCs differentiation homeostasis. Our results reveal the function of PA28γ in bone diseases and provide a new theoretical basis for expanding the treatment of bone diseases.


Assuntos
Autoantígenos , Doenças Ósseas , Células-Tronco Mesenquimais , Camundongos , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Osteogênese , beta Catenina/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Via de Sinalização Wnt/fisiologia , Doenças Ósseas/metabolismo , Células da Medula Óssea/metabolismo , Células Cultivadas , Camundongos Knockout , Lipídeos
10.
Nat Commun ; 15(1): 2603, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521777

RESUMO

Supramolecular hydrogels derived from nucleosides have been gaining significant attention in the biomedical field due to their unique properties and excellent biocompatibility. However, a major challenge in this field is that there is no model for predicting whether nucleoside derivative will form a hydrogel. Here, we successfully develop a machine learning model to predict the hydrogel-forming ability of nucleoside derivatives. The optimal model with a 71% (95% Confidence Interval, 0.69-0.73) accuracy is established based on a dataset of 71 reported nucleoside derivatives. 24 molecules are selected via the optimal model external application and the hydrogel-forming ability is experimentally verified. Among these, two rarely reported cation-independent nucleoside hydrogels are found. Based on their self-assemble mechanisms, the cation-independent hydrogel is found to have potential applications in rapid visual detection of Ag+ and cysteine. Here, we show the machine learning model may provide a tool to predict nucleoside derivatives with hydrogel-forming ability.


Assuntos
Hidrogéis , Nucleosídeos , Aprendizado de Máquina , Cátions
11.
Oral Dis ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439057

RESUMO

OBJECTIVE: This study aimed to investigate the expression of tight junction, its distribution pattern in oral lichen planus samples and its potential association with the severity of oral lichen planus. MATERIALS AND METHODS: Cross-sectional study designs were conducted. Transcriptome sequencing was conducted using oral mucosal tissues from 22 patients with oral lichen planus and 11 healthy controls. Immunohistochemistry and quantitative reverse transcription PCR were performed to verify the expression of claudin-1, claudin-4, occludin and zonula occludens-1 in oral mucosal tissues from another 30 patients with oral lichen planus and 26 healthy controls. The relationship between tight junction protein expression and oral lichen planus severity was explored using correlation analysis. RESULTS: 5603 and 2475 differentially expressed genes were upregulated and downregulated respectively, in oral lichen planus tissues. KEGG analysis showed that tight junctions including CLDN1, CLDN4, OCLN and TJP1 were downregulated in oral lichen planus. Claudin-1, claudin-4, occludin and zonula occludens-1 expression was verified to be significantly lower in oral lichen planus. Furthermore, correlation analyses showed that decreased occludin expression was positively related to oral lichen planus severity. CONCLUSION: Decreased expression of TJ barrier proteins may be associated with the development of oral lichen planus.

12.
J Mater Chem B ; 12(12): 3015-3021, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38426569

RESUMO

Oral ulceration (OU), a prevalent oral mucosal condition causing significant pain and hindering eating and speaking, adversely impacts the patient's quality of life. Topical medications are preferred for their minimal side effects and convenient administration. However, existing formulations generally present discomfort and insufficient drug retention due to the thick formulations and poor adhesion, which considerably restrict their therapeutic effectiveness. In this study, a thin and lightweight double-layer oral film based on FDA approved excipients with excellent adhesion under wet oral conditions and outstanding biocompatibility is successfully developed by a simple method. It consists of an adhesive layer for anchoring in situ to delivery drugs and a hydrophobic layer to isolate the saliva for unidirectional drug delivery. The double-layer oral film with extremely thin appearance (only 0.11 mm thick) offers excellent adhesion (up to 150 min on an SD rat oral ulceration), which was also matched with its drug release time (87.47% release in 2 h). Animal experiments confirmed that the double-layer oral film carrying dexamethasone sodium phosphate achieved satisfactory efficacy in the SD rat oral ulcer model. Hence, this biologically friendly double-layer thin oral film holds great promise for clinical application in topical drug therapy for oral mucosal conditions.


Assuntos
Mucosa Bucal , Úlceras Orais , Humanos , Ratos , Animais , Úlceras Orais/tratamento farmacológico , Qualidade de Vida , Ratos Sprague-Dawley , Sistemas de Liberação de Medicamentos
13.
Artigo em Inglês | MEDLINE | ID: mdl-38366692

RESUMO

AIMS: To investigate the clinical and radiographic outcomes of a chemically modified sandblasted large-grit acid-etched implant (hydrophilic) in lateral sinus floor elevation (LSFE), compared with a conventional one (hydrophobic). MATERIALS AND METHODS: A retrospective study design was adopted. Patients who received LSFE with simultaneous implant placement were recruited. According to different types of implant surfaces, patients were divided into two groups (the hydrophilic group and the hydrophobic group). Implant survival rate (SR), endo-sinus bone stability on the radiographs, mean probing depths, percentage of bleeding on probing, marginal bone loss, and patient satisfaction were evaluated. RESULTS: A total of 106 patients with 180 implants (hydrophilic:101, hydrophobic:79) in 119 maxillary sinuses were included. The follow-up period ranged from 2 to 5 years. Three hydrophobic implants and one hydrophilic implant in four different patients failed. The SR of the hydrophilic group was higher than that of the hydrophobic group but without a significant difference (p > .05). The change and change rate of endo-sinus bone height (ΔESBH and RΔESBH ) and bone volume (ΔESBV and RΔESBV ) in the hydrophilic group were less than those in the hydrophobic group, with a significant difference at 6 months after implantation. No other significant difference was found between the two groups. CONCLUSION: Within the limitations of this study, both hydrophilic and hydrophobic implants were suitable for LSFE with predictable clinical outcomes. Meanwhile, hydrophilic implants could contribute to the grafted endo-sinus bone stability during healing time.

14.
Br J Cancer ; 130(4): 660-670, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38177661

RESUMO

BACKGROUND: The clinical value and molecular characteristics of tumor differentiation in oral squamous cell carcinoma (OSCC) remain unclear. There is a lack of a related molecular classification prediction system based on pathological images for precision medicine. METHODS: Integration of epidemiology, genomics, experiments, and deep learning to clarify the clinical value and molecular characteristics, and develop a novel OSCC molecular classification prediction system. RESULTS: Large-scale epidemiology data (n = 118,817) demonstrated OSCC differentiation was a significant prognosis indicator (p < 0.001), and well-differentiated OSCC was more chemo-resistant than poorly differentiated OSCC. These results were confirmed in the TCGA database and in vitro. Furthermore, we found chemo-resistant related pathways and cell cycle-related pathways were up-regulated in well- and poorly differentiated OSCC, respectively. Based on the characteristics of OSCC differentiation, a molecular grade of OSCC was obtained and combined with pathological images to establish a novel prediction system through deep learning, named ShuffleNetV2-based Molecular Grade of OSCC (SMGO). Importantly, our independent multi-center cohort of OSCC (n = 340) confirmed the high accuracy of SMGO. CONCLUSIONS: OSCC differentiation was a significant indicator of prognosis and chemotherapy selection. Importantly, SMGO could be an indispensable reference for OSCC differentiation and assist the decision-making of chemotherapy.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias Bucais/patologia , Pesquisa Translacional Biomédica , Prognóstico
15.
Bone Res ; 12(1): 2, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38221522

RESUMO

Reconstruction of irregular oral-maxillofacial bone defects with an inflammatory microenvironment remains a challenge, as chronic local inflammation can largely impair bone healing. Here, we used magnesium silicate nanospheres (MSNs) to load microRNA-146a-5p (miR-146a) to fabricate a nanobiomaterial, MSN+miR-146a, which showed synergistic promoting effects on the osteogenic differentiation of human dental pulp stem cells (hDPSCs). In addition, miR-146a exhibited an anti-inflammatory effect on mouse bone marrow-derived macrophages (BMMs) under lipopolysaccharide (LPS) stimulation by inhibiting the NF-κB pathway via targeting tumor necrosis factor receptor-associated factor 6 (TRAF6), and MSNs could simultaneously promote M2 polarization of BMMs. MiR-146a was also found to inhibit osteoclast formation. Finally, the dual osteogenic-promoting and immunoregulatory effects of MSN+miR-146a were further validated in a stimulated infected mouse mandibular bone defect model via delivery by a photocuring hydrogel. Collectively, the MSN+miR-146a complex revealed good potential in treating inflammatory irregular oral-maxillofacial bone defects.


Assuntos
MicroRNAs , Nanosferas , Camundongos , Animais , Humanos , MicroRNAs/genética , Osteogênese/genética , Inflamação/tratamento farmacológico , Regeneração Óssea/genética , Silicatos/farmacologia , Silicatos de Magnésio/farmacologia
16.
Int J Endocrinol ; 2024: 2470721, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38268989

RESUMO

Objective: The objective of this study is to explore the utilization of next-generation sequencing (NGS) technology in evaluating the likelihood of identifying individuals with papillary thyroid microcarcinoma (PTMC ≤10 mm) who are at high or low risk. Design: NGS was used to analyze 393 formalin-fixed, paraffin-embedded tissues of PTC tumors, all of which were smaller than 15 mm. Results: The study found that bilateralism, multifocality, intrathyroidal spread, and extrathyroidal extension were present in 84 (21.4%), 153 (38.9%), 16 (4.1%), and 54 (13.7%) cases, respectively. Metastasis of cervical lymph nodes was identified in 226 (57.5%) cases and 96 (24.4%) cases with CLNM >5. Out of the total number of cases studied, 8 cases (2.3%) showed signs of tumor recurrence, all of which were localized and regional. Genetic alterations were detected in 342 cases (87.0%), with 336 cases revealing single mutations and 6 cases manifesting compound mutations. 332 cases (84.5%) had BRAFV600E mutation, 2 cases had KRASQ61K mutation, 2 cases had NRASQ61R mutation, 8 cases had RET/PTC1 rearrangement, 3 cases had RET/PTC3 rearrangement, and 1 case had TERT promoter mutation. Additionally, six individuals harbored concurrent mutations in two genes. These mutations were of various types and combinations: BRAFV600E and NRASQ61R (n = 2), BRAFV600E and RET/PTC3 (n = 2), BRAFV600E and RET/PTC1 (n = 1), and BRAFV600E and TERT promoter (n = 1). The subsequent analysis did not uncover a significant distinction in the incidence of gene mutation or fusion between the cN0 and cN1 patient cohorts. The presence of BRAFV600E mutation and CLNM incidence rates were found to be positively correlated with larger tumor size in PTMC. Our data showed that gene mutations did not appear to have much to do with high-risk papillary thyroid microcarcinoma (PTMC). However, when we looked at tumor size, we found that if the tumor was at least 5 millimeters in size, there was a higher chance of it being at high risk for PTM (P < 0.001, odds ratio (OR) = 2.55, 95% confidence interval (CI): 1.57-4.14). Identification of BRAFV600E mutation was not demonstrated to be significantly correlated with advanced clinicopathological characteristics, although it was strongly associated with a bigger tumor diameter (OR = 4.92, 95% CI: 2.40-10.07, P < 0.001). Conclusion: In clinical practice, BRAFV600E mutation does not consistently serve as an effective biomarker to distinguish high-risk PTMC or predict tumor progression. The size of the tumor has a significant correlation with its aggressive characteristics. PTMC with a diameter of ≤5 mm should be distinguished and targeted as a unique subset for specialized treatment.

17.
Int J Biol Macromol ; 259(Pt 1): 129254, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191113

RESUMO

Skin wounds are susceptible to microbial infections which commonly lead to the delayed wound healing. Rapid clearance of pathogens from the wound is of great significance and importance for efficient healing of the infected wounds. Herein, we report a multifunctional hybrid dressing, which simply combines sodium bicarbonate (NaHCO3) and hyaluronic acid (HA) for the synergistic wound healing. Addition of NaHCO3 allows the hybrid dressing to have the great antibacterial and antioxidant activity, while maintaining the intrinsic skin repair function of HA. As a result, NaHCO3/HA hybrid dressing showed the great antibacterial activity against both Gram-positive (S. aureus) and Gram-negative (E. coli) pathogens, the ability to improve the fibroblasts proliferation and migration, the cell-protection capacity under H2O2-induced oxidative stress, and most importantly, the great healing efficacy for the mice wound infected by S. aureus. We further found that the epidermal regeneration, the collagen deposition and the angiogenesis were enhanced by NaHCO3/HA hybrid dressing. All these effects were NaHCO3 concentration-dependent. Since the NaHCO3/HA hybrid dressing is drug-free, easily fabricated, biocompatible, and efficient for wound healing, it may have great potentials for clinical management of infected wounds.


Assuntos
Ácido Hialurônico , Cicatrização , Camundongos , Animais , Ácido Hialurônico/farmacologia , Bicarbonato de Sódio/farmacologia , Bicarbonato de Sódio/uso terapêutico , Bicarbonatos/farmacologia , Escherichia coli , Staphylococcus aureus , Peróxido de Hidrogênio/farmacologia , Bandagens , Antibacterianos/farmacologia , Hidrogéis/farmacologia
18.
Redox Biol ; 70: 103032, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38232457

RESUMO

Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.


Assuntos
Senescência Celular , Estresse Oxidativo , Oxirredução , Fatores de Transcrição/metabolismo , Tiorredoxinas/metabolismo
19.
mSystems ; 9(2): e0077723, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38259106

RESUMO

During the process of periodontitis-promoting oral squamous cell carcinoma (OSCC), the periodontitis microbiota can facilitate OSCC development by activating γδ T cells. Inhibiting γδ T cells through immunotherapy has been shown to significantly alleviate various types of cancer. However, the underlying mechanism by which inhibiting γδ T cells influenced cancer treatment has not been fully elucidated. In this study, a mouse model of OSCC with periodontitis was established, and γδ T cells were inhibited by antibodies. Gut samples from the mice were collected and analyzed by metabolomics, metagenomics, and 16S rRNA. Integrative analysis of the gut metabolome and microbiome revealed that targeting γδ T resulted in changes in the levels of metabolites associated with cancer in the gut. Although there was no difference in the α diversity of microbiota, ß diversity was significantly different, with a more heterogeneous community structure in the mice receiving targeted γδ T immunotherapy. Statistical analysis of the gut microbiota at the species level revealed a significant enrichment of Lactobacillus murinus, which was significantly correlated with γδ T abundance. The functional analysis revealed that inhibiting γδ T could impact the functional gene. A comprehensive analysis revealed that L. murinus is especially associated with changes in adenine, which also had connection with the concentration of IL-17 and the abundance of γδ T.IMPORTANCEThis study revealed the effect of γδ T cells on gut microbial dysbiosis and identify potential links between gut microbiota and metabolism, providing new insights into the role of γδ T during the process of periodontitis-induced OSCC, and identifying relevant biomarkers for future research and clinical monitoring protocol development.


Assuntos
Carcinoma de Células Escamosas , Microbioma Gastrointestinal , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Periodontite , Animais , Camundongos , Microbioma Gastrointestinal/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , RNA Ribossômico 16S/genética
20.
Oncogene ; 43(6): 388-394, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177410

RESUMO

Tumor immune evasion is a hallmark of Head and Neck Cancers. The advent of immune checkpoint inhibitors (ICIs) in the first-line setting has transformed the management of these tumors. Unfortunately, the response rate of Head and Neck Squamous Cell Carcinomas (HNSCC) to ICIs is below 15%, regardless of the human papillomavirus (HPV) status, which might be partially related with impaired antigen presentation machinery (APM). Mechanistically, HNSCC cells are usually defective in the expression of MHC-I associated APM, while this transcriptional pathway is critical for the activation of tumor-killing effector T-cells. To specifically illuminate the phenomenon and seek for therapeutic strategies, this review summarizes the most recently identified role of genetic and functional dysregulation of the MHC-I pathway, specifically through changes at the genetic, epigenetic, post-transcriptional, and post-translational levels, which substantially contributes to HNSCC immune escape and ICI resistance. Several treatment modalities can be potentially exploited to restore APM signaling in tumors, which improves anti-tumor immunity through the activation of interferons, vaccines or rimantadine against HPV and the inhibition of EGFR, SHP-2, PI3K and MEK. Additionally, the combinatorial use of radiotherapy or cytotoxic agents with ICIs can synergize to potentiate APM signaling. Future directions would include further dissection of MHC-I related APM signaling in HNSCC and whether reversing this inhibition in combination with ICIs would elicit a more robust immune response leading to improved response rates in HNSCC. Therapeutic approaches to restore the MHC-I antigen presentation machinery in Head and Neck Cancer. (Red color texts represent the according strategies and the outcomes).


Assuntos
Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Apresentação de Antígeno , Neoplasias de Cabeça e Pescoço/genética , Interferons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...